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Experimental data vs. Real-world data

AI Model

many samples with labels 
per class
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AI Model

many samples with labels 
per class

TV shows Zoo

Human

Before:
seen few animals

When growing up:
learn more new animals

online data stream, limited labeled data, …  

Experimental data vs. Real-world data

vs.
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Data-limited image classification
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Few-Shot Learning
(FSL) Classifier
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Class-Incremental Learning (CIL)
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Incremental learning
Also known as: continual learning, lifelong learning, ...
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Rebuffi et al.[1] demand the following three properties of an algorithm to qualify as 
class-incremental:

① Different classes arrive in different phases

②At any time, provide a classifier for the classes observed so far

③ The memory is limited

[1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017.
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Phase 1

Data 1

Classifier

train

Test for 
Data 1
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Data 1

Classifier

Test for 
Data 1

Exemplar 1Phase 1

train
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Classifier

Test for 
Data 1

Classifier

Data 2

Test for 
Data 1+2

Exemplar 1 Memory limitation

train

Phase 2
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Classifier

Test for 
Data 1

Classifier

Test for 
Data 1+2

Classifier

Data 3

Test for 
Data 1+2+3

Exemplar 1+2Phase 3

train Major challenges:
The classifier overfits new data
and forgets the old knowledge
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1. Replaying on old class exemplars
Allocating as much memory as possible for the new data[1, 2, 3]

Imbalance between the old and new data
Our proposed solution: use RL to control the memory allocation

2. Using a knowledge distillation loss
Computing the distillation loss on the new data[1, 2, 3]

Hampering the learning of new classes
Our proposed solution: leverage external unlabeled data

[1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
[2] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019;
[3] Wu, Yue, et al. “Large scale incremental learning.” CVPR 2019.
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new-class
data

old-class
exemplars

memory new-class
data

old-class
exemplars

memory

Existing methods [1,2,3]
Allocate as much memory as 
possible for the new-class data

Our idea
Learn a controller to 
adjust the memory allocation

controller

Limitations:  
- Data imbalance problem
- Catastrophic forgetting problem

Benefits:  
+ Data is more balanced 
+ Overcome the forgetting problem 

by allocating more memory for exemplars 
[1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
[2] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019;
[3] Wu, Yue, et al. “Large scale incremental learning.” CVPR 2019.

How to allocate the memory between new-class data and old-class exemplars?
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How to allocate the memory between new-class data and old-class exemplars?

Challenge 1: due to the CIL protocol, we’re not allowed to use the historical and future data

Challenge 2: the memory allocation is a non-differentiable operation
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How to allocate the memory between new-class data and old-class exemplars?

Challenge 1: due to the CIL protocol, we’re not allowed to use the historical and future data

Challenge 2: the memory allocation is a non-differentiable operation

Our solution: generate the pseudo CIL tasks, and train the controller on them

Our solution: use the REINFORCE algorithm[4] to update the controller

[4] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.
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How to allocate the memory between new-class data and old-class exemplars?
Challenge 1: due to the CIL protocol, we’re not allowed to use the historical and future data

Our solution: generate the pseudo CIL tasks, and train the controller on them

The data of the initial phase

Another dataset

Create
controller

Train

Pseudo CIL tasks

OR
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How to allocate the memory between new-class data and old-class exemplars?
Challenge 2: the memory allocation is a non-differentiable operation

Our solution: use the REINFORCE algorithm[4] to update the controller

[4] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.
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How to allocate the memory between new-class data and old-class exemplars?
Highlighted: our method works especially well in more serious forgetting settings.
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How to solve the conflict between distillation and cross-entropy in CIL? 

Existing methods and problems
Computing distillation loss on new data[1, 2]

Our idea
Selecting the unlabelled data and
Computing distillation loss on these data

Benefits:  
+ No depreciation for new class performance
+ No additional supervision required
+ Easy to train

[1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
[2] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." TPAMI 2017;



SMU Classification: Restricted

Class-Incremental Learning (CIL)

20

How to solve the conflict between distillation and cross-entropy in CIL? 
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How to solve the conflict between distillation and cross-entropy in CIL? 
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How to solve the conflict between distillation and cross-entropy in CIL? 
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How to solve the conflict between distillation and cross-entropy in CIL? 
Visualization results: related cues are found in the unlabelled images
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How to solve the conflict between distillation and cross-entropy in CIL? 
Quantitative results: our method works especially well in low-shot (in old classes) settings 
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Related works in our team
Z. Luo, Y. Liu, B. Schiele, Q. Sun. Class-Incremental Exemplar Compression for Class-Incremental Learning. 
CVPR 2023.
Y. Liu, Y. Li, B. Schiele, Q. Sun. Online Hyperparameter Optimization for Class-Incremental Learning. 
AAAI 2023. Oral.
Q. Sun* Y. Liu*, Z. Chen, T.-S. Chua, B. Schiele. Meta-Transfer Learning through Hard Tasks. 
T-PAMI 2022.
Y. Liu, B. Schiele, Q. Sun. RMM: Reinforced Memory Management for Class-Incremental Learning. 
NeurIPS 2021.
Y. Liu, B. Schiele, Q. Sun. Adaptive Aggregation Networks for Class-Incremental Learning. 
CVPR 2021.
Y. Liu, Y. Su, A.-A. Liu, B. Schiele, Q. Sun. Mnemonics training: Multi-class incremental learning without forgetting. 
CVPR 2020. Oral.
Y. Liu, B. Schiele, Q. Sun. An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning. 
ECCV 2020.
Q. Sun*, Y. Liu*, T.-S. Chua, B. Schiele. Meta-Transfer Learning for Few-Shot Learning. 
CVPR 2019. 1000+ citations.
X, Li, Q. Sun, Y. Liu, T.-S. Chua, et al. Learning to Self-Train for Semi-Supervised Few-Shot Classification. 
NeurIPS 2019.

B. Schiele

T.-S. Chua

Y. Liu
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Few-Shot Learning
(FSL) Classifier

Zero-Shot Learning
(ZSL)

Open-Set Recognition
(OSR)

Class-Incremental 
Learning

(CIL)

Seen

+ =
Unseen

Recognize seen Reject unseen

Challenge: 
catastrophic

forgetting

Limited 
images 

and 
labels

No 
images, 

but 
attribute 

labels

No 
unseen 
class 
labels

Little 
data left 
for past 
classes

Label-limited image classification
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Label-limited semantic segmentation

Class Activation Maps
(CAM)
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CAM

Weakly Supervised Semantic Segmentation (WSSS)

Only 
image-
level 

labels

No pixel-
level 

labels; 
only 

image 
level 

labels
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Why do we need weakly-supervised semantic segmentation techniques?

Weakly-Supervised Semantic Segmentation (WSSS)
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Label-limited semantic segmentation

Class Activation Maps
(CAM)
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CAM

Weakly Supervised Semantic Segmentation (WSSS)

Only 
image-
level 

labels

No pixel-
level 

labels; 
only 

image 
level 

labels
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Label-limited semantic segmentation

Class Activation Maps
(CAM)
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CAM

Weakly Supervised Semantic Segmentation (WSSS)

Only 
image-
level 

labels

No pixel-
level 

labels; 
only 

image 
level 

labels

Dong Zhang

Zhaozheng Chen
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Label-limited semantic segmentation

Class Activation Maps
(CAM)
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CAM

Weakly Supervised Semantic Segmentation (WSSS)

Only 
image-
level 

labels

No pixel-
level 

labels; 
only 

image 
level 

labels

Dong Zhang

Zhaozheng Chen
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient

BCE
results, 

i.e., vanilla 
CAM

We found many confusing regions are between co-occurring objects

Here are 
better 
ones:
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient

Why?

We inspect the Sigmoid function in BCE: exp(x)/(1+exp(x))
where x denotes the prediction logit of any individual class e.g., person.

x
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient

What about Softmax CE (SCE)?
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient

• 80-class models: BCE and SCE 
yield equal-quality classifiers 
but clearly different CAMs

What about Softmax CE (SCE)?
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient

• The CAMs of SCE models are of 
higher mIoU.

• This superiority is maintained in 
validation images.

What about Softmax CE (SCE)?
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient
Justification: BCE vs. SCE

For the ease of analysis, we consider the binary-class (K = 2) situation with the positive 
class p and negative class q:
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient
Justification: BCE vs. SCE

For the ease of analysis, we consider the binary-class (K = 2) situation with the positive 
class p and negative class q:

For confusing prediction logits, i.e.,                 , there are two subcases: both are of 
small or large numbers. In these cases, either                 or                 is zero. 
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient
Justification: BCE vs. SCE

For the ease of analysis, we consider the binary-class (K = 2) situation with the positive 
class p and negative class q:

For confusing prediction logits, i.e.,                 , there are two subcases: both are of 
small or large numbers. In these cases, both                 and                 are non-zeros. 
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient
Justification: BCE vs. SCE

For the ease of analysis, we consider the binary-class (K = 2) situation with the positive 
class p and negative class q:

Therefore, SCE is more active than BCE to yield gradients for optimization. 
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Weakly-Supervised Semantic Segmentation (WSSS)

The problem we found in Step 1: binary cross-entropy (BCE) loss is inefficient
Justification: BCE vs. SCE

Visualization of Gradient Changes in Training with BCE and SCE

• The gradients of SCE 
loss change more 
rapidly for both positive 
and negative classes

• The SCE model learns 
more actively
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Weakly-Supervised Semantic Segmentation (WSSS)

The solution is introducing SCE in the process of CAM extraction!

implement

Our method is called ReCAM
SCE classifiers

https://github.com/zhaozhengChen/ReCAM

https://github.com/zhaozhengChen/ReCAM
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Weakly-Supervised Semantic Segmentation (WSSS)

The solution is introducing SCE in the process of CAM extraction!

results

https://github.com/zhaozhengChen/ReCAM
Our method is called ReCAM

https://github.com/zhaozhengChen/ReCAM
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Weakly-Supervised Semantic Segmentation (WSSS)

The solution is introducing SCE in the process of CAM extraction!

results

https://github.com/zhaozhengChen/ReCAM
Our method is called ReCAM

https://github.com/zhaozhengChen/ReCAM
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Weakly-Supervised Semantic Segmentation (WSSS)

The solution is introducing SCE in the process of CAM extraction!

results

Our method is called ReCAM
https://github.com/zhaozhengChen/ReCAM

https://github.com/zhaozhengChen/ReCAM
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Weakly-Supervised Semantic Segmentation (WSSS)

The solution is introducing SCE in the process of CAM extraction!

results

https://github.com/zhaozhengChen/ReCAM
Our method is called ReCAM

https://github.com/zhaozhengChen/ReCAM
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Weakly-Supervised Semantic Segmentation (WSSS)

Problem not solved! Transformer based? End to end optimizable?

Adaptive 
thresholding? 

Adaptive thresholding? 
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Extracting Class Activation Maps from Non-Discriminative Features as well
• Motivation: biased classifier

• Question: how to debias?
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• Solution: use unsupervised clustering to generate non-biased prototypes as classifiers

• Question: why this works?

Extracting Class Activation Maps from Non-Discriminative Features as well
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• Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝑓(𝒙𝟏)=[30, 5, 5] 𝑓(𝒙𝟐)=[5, 10, 5]

𝑓(𝒙𝟑)=[0, 0, 2]

Extracting Class Activation Maps from Non-Discriminative Features as well
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• Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

𝒙𝟏

𝒙𝟐

𝒙𝟑

Before Normalization
𝒙𝟏 𝒙𝟐 𝒙𝟑

CAM 130 35 2

𝑓(𝒙𝟏)=[30, 5, 5] 𝑓(𝒙𝟐)=[5, 10, 5]

𝒘𝒃𝒊𝒓𝒅 =[4, 1, 1]
𝑓(𝒙𝟑)=[0, 0, 2]

CAM Eq. (1)

Classifier weights

130 is so bigger, which is called “biased”

Extracting Class Activation Maps from Non-Discriminative Features as well
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• Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

𝒙𝟏

𝒙𝟐

𝒙𝟑

Head Tail

𝑓(𝒙𝟏)=[30, 5, 5] 𝑓(𝒙𝟐)=[5, 10, 5]

𝑓(𝒙𝟑)=[0, 0, 2]

30

3033 11 10
8

Normalization in each cluster?

Extracting Class Activation Maps from Non-Discriminative Features as well
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• Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟏 𝒙𝟐 𝒙𝟑
head 1.0 0.1 0.0
tail 0.2 0.9 0.1
sky 0.0 0.0 0.9

LPCAM 0.60 0.50 -0.85

Head Tail

𝑓(𝒙𝟏)=[30, 5, 5] 𝑓(𝒙𝟐)=[5, 10, 5]

𝑓(𝒙𝟑)=[0, 0, 2]

Lo
ca

l p
ro

to
ty

pe
s

30

3033 11 10
8

Normalization in each cluster?

Extracting Class Activation Maps from Non-Discriminative Features as well
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• Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟏 𝒙𝟐 𝒙𝟑
head 1.0 0.1 0.0
tail 0.2 0.9 0.1
sky 0.0 0.0 0.9

LPCAM 0.60 0.50 -0.85

Head Tail

𝑓(𝒙𝟏)=[30, 5, 5] 𝑓(𝒙𝟐)=[5, 10, 5]

𝑓(𝒙𝟑)=[0, 0, 2]
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Normalization in each cluster?

Extracting Class Activation Maps from Non-Discriminative Features as well
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• Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

𝒙𝟏

𝒙𝟐

𝒙𝟑

Before Normalization
𝒙𝟏 𝒙𝟐 𝒙𝟑

CAM 130 35 2

𝒙𝟏 𝒙𝟐 𝒙𝟑
head 1.0 0.1 0.0
tail 0.2 0.9 0.1
sky 0.0 0.0 0.9

LPCAM 0.60 0.50 -0.85

Head Tail

𝑓(𝒙𝟏)=[30, 5, 5] 𝑓(𝒙𝟐)=[5, 10, 5]

𝒘𝒃𝒊𝒓𝒅 =[4, 1, 1]
𝑓(𝒙𝟑)=[0, 0, 2]

CAM Eq. (1)

Lo
ca

l p
ro

to
ty

pe
s

Classifier weights

30

3033 11 10
8

Extracting Class Activation Maps from Non-Discriminative Features as well



SMU Classification: Restricted

56

• Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

𝒙𝟏

𝒙𝟐

𝒙𝟑

After Normalization

Before Normalization
𝒙𝟏 𝒙𝟐 𝒙𝟑

CAM 130 35 2

𝒙𝟏 𝒙𝟐 𝒙𝟑
head 1.0 0.1 0.0
tail 0.2 0.9 0.1
sky 0.0 0.0 0.9

LPCAM 0.60 0.50 -0.85

𝒙𝟏 𝒙𝟐 𝒙𝟑
CAM 1.00 0.27 0.02

LPCAM 1.00 0.83 0.00

Head Tail

𝑓(𝒙𝟏)=[30, 5, 5] 𝑓(𝒙𝟐)=[5, 10, 5]

𝒘𝒃𝒊𝒓𝒅 =[4, 1, 1]
𝑓(𝒙𝟑)=[0, 0, 2]

CAM Eq. (1)
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ro
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ty
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s

Classifier weights

30

3033 11 10
8

Extracting Class Activation Maps from Non-Discriminative Features as well



SMU Classification: Restricted

57

• Justification: from supervised biased classifier to unsupervised unbiased classifier (local prototypes)

𝒙𝟏

𝒙𝟐

𝒙𝟑

After Normalization

Before Normalization
𝒙𝟏 𝒙𝟐 𝒙𝟑

CAM 130 35 2

𝒙𝟏 𝒙𝟐 𝒙𝟑
head 1.0 0.1 0.0
tail 0.2 0.9 0.1
sky 0.0 0.0 0.9

LPCAM 0.60 0.50 -0.85

𝒙𝟏 𝒙𝟐 𝒙𝟑
CAM 1.00 0.27 0.02

LPCAM 1.00 0.83 0.00

Head Tail

𝑓(𝒙𝟏)=[30, 5, 5] 𝑓(𝒙𝟐)=[5, 10, 5]

𝒘𝒃𝒊𝒓𝒅 =[4, 1, 1]
𝑓(𝒙𝟑)=[0, 0, 2]

CAM Eq. (1)
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Classifier weights
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3033 11 10
8

Extracting Class Activation Maps from Non-Discriminative Features as well

unbiased

biased
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• Results: LPCAM can be used as improved version of CAM

Extracting Class Activation Maps from Non-Discriminative Features as well

The WSSS pipeline:
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• Results: LPCAM can be used as improved version of CAM

Extracting Class Activation Maps from Non-Discriminative Features as well

The WSSS pipeline:
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• Motivation: biased classifier

Extracting Class Activation Maps from Non-Discriminative Features as well
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• Large models released, e.g., SAM (Segment Anything Model) 

Extracting Class Activation Maps from Non-Discriminative Features as well

SAM

represents a rough location 
of any object or any stuff
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• Large models released, e.g., SAM (Segment Anything Model) 

Extracting Class Activation Maps from Non-Discriminative Features as well

Original image

“Horse” bbox

“Person” bbox

SAM

SAM

A simple testing by 
using an object 
detector:

VOC: 86.45%!!!
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• Large models released, e.g., SAM (Segment Anything Model) 

Extracting Class Activation Maps from Non-Discriminative Features as well

Original image

“Horse” bbox

“Person” bbox

SAM

SAM

A simple testing by 
using an object 
detector:

VOC: 86.45%!!!
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• Large models released, e.g., SAM (Segment Anything Model) 

Extracting Class Activation Maps from Non-Discriminative Features as well

Original image

“Horse” bbox

“Person” bbox

SAM

SAM

A simple testing by 
using an object 
detector:

VOC: 100%!!!

Actually,
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Weakly-Supervised Semantic Segmentation (WSSS)

Problem not solved! Transformer based? End to end optimizable?

Adaptive 
thresholding? 

Adaptive thresholding? 
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Weakly-Supervised Semantic Segmentation (WSSS)

Problem solved? Transformer based? End to end optimizable?

Adaptive 
thresholding? 

Adaptive thresholding? 
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Weakly-Supervised Semantic Segmentation (WSSS)

Problem solved!
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